Follow Us!!:

アプリなら、たくさんの便利な機能が無料で使える!
今すぐアプリをダウンロードして、もっと自由に学ぼう!

履歴の確認
お気に入り・フォローの登録
通知の受け取り
ファイルの作成・追加・複製
メモの作成・確認
モチベボードの投稿
App StoreからダウンロードGoogle Playで手に入れよう
運営会社お問い合わせ利用規約プライバシーポリシー

© 2025, okke, Inc.

最難関の数学 by 林俊介

【京大1998】図形を数式で処理する方法【図形の性質・不等式】

次の動画:【京大2016】突破口はどこだ?3次方程式の難問【図形の性質・不等式】

概要

動画投稿日|2021年5月29日

動画の長さ|31:31

トップを目指す受験生のために,国公立大学の入試問題を中心に,大学入試の数学を解説中!ぜひチャンネル登録お願いします。 今回は,1998年の京大文系数学より,直角三角形とその内接円に関する問題をピックアップ。 長さの和に関する条件があるときの,直角三角形の面積の最大値を問われています。 一見大したことのない問題に見えますが,こういう図形の問題を数式で処理するときは ▶︎ 三角形の成立条件 ▶︎ 三平方の定理 ▶︎ 負の長さが存在しない など,様々な「見えない条件」があるので,注意深く計算をする必要があります。 実際,今回の直角三角形の面積は,内接円の半径 r の二次式になるのですが,単に平方完成するだけではその最大値を求めることができません。 上述の条件を余さず立式して,r の範囲(定義域)を明らかにする必要があるのです。 「なんとなく」で解いたり値を出したりするだけなら簡単ですが,しっかり記述しようとするとそれなりに大変な問題です。 だからこそ差がつきやすいので,記述練習はしっかり行いましょう! ---------- <Twitter: @884_96> https://twitter.com/884_96 ---------- 【プロフィール】 林 俊介 (はやし しゅんすけ) オンライン家庭教師を運営する会社の社長。 大学の講師もやっています。 2015年 筑波大学附属駒場高等学校 卒 2015年 東京大学理科一類 入学 2019年 東京大学理学部物理学科 卒 ・2014年 日本物理オリンピック金賞 ・2014年 東大実戦模試物理1位 ・東大入試本番では数学で 9 割を獲得 ---------- <お仕事のご依頼> チャンネル概要欄に記載のメールアドレスまたは Twitter の DM までお願いします! ---------- <目次> 00:00 1998年 京都大学 文理共通問題 00:33 (1) 問題の様子を図示 01:20 (1) 長さの条件式を立てる 05:46 (1) 答えと解法のまとめ 06:55 (2) △ABC の面積計算 09:42 (2) 平方完成するだけは NG 10:39 (2) 図形の成立条件を調べる 14:17 (2) 条件式の整理 18:24 (2) 条件式を r について解く 20:18 (2) S(r) の最大値を求める 21:32 (2) 答えと解法のまとめ 24:13 (2) 別解に思い至るまでの発想 26:23 (2) (相加平均) ≧ (相乗平均) 26:55 (2) 等号が成立するとき 29:23 (2) 別解のまとめ 31:06 おわりに

タグ

#高3#レベル4#式と証明#二次関数#図形の性質#演習

関連動画

33:24
【京大2005】放物線と "線分" が交わる条件【方程式・領域】最難関の数学 by 林俊介
6:07
【京都大】自分で文字設定する問題!たてぃこ
14:35
福田の数学〜明治大学2022年理工学部第2問〜平面図形の計量JiroFukuda Math Channel
38:40
【過去問解説】2017年 京大 理系 第4問AKITOの勉強チャンネル
8:31
【京大1998】絶対に正解しなきゃいけない図形問題最難関の数学 by 林俊介

関連用語

内心
二次不定方程式
解の公式
内接円の半径
相加相乗平均