Follow Us!!:

アプリなら、たくさんの便利な機能が無料で使える!
今すぐアプリをダウンロードして、もっと自由に学ぼう!

履歴の確認
お気に入り・フォローの登録
通知の受け取り
ファイルの作成・追加・複製
メモの作成・確認
モチベボードの投稿
App StoreからダウンロードGoogle Playで手に入れよう
運営会社お問い合わせ利用規約プライバシーポリシー

© 2025, okke, Inc.

桁数

概要

とてつもなく大きい数( とか)を与えられて、「はい、何桁でしょう?」という問題はよく出てくる。その時に強力な味方になるのが、 常用対数を使って立式する考え方。下の例を通じて学ぼう。

常用対数は、底を とする対数のこと。底って何それ美味しいの?っていう方は、対数関数の定義から復習しよう。例えばこのはいち先生の授業動画シリーズの「対数」の動画を参照。

例

以下、、 とする。

【問 】 は何桁か?

桁とおいて、この を求める。 が 桁であることを数式で書くと、

となる。この立式がめちゃくちゃ大事。 の何乗か、イコールはつけるのかどうか、について悩むので、 覚えるのではなくて、その都度小さい数で実験すると良い。例えば、 桁の数 は「 以上 未満」なので、

と書ける。つまり、左辺の指数は桁数 で等号付き、右辺の指数は桁数で等号は付かないことが、すぐにわかる。

元に戻ると、 の全ての辺は正なので(← 真数条件 )、常用対数を取ることができて、

となる。ここで、底が で より大きいので、不等号の向きが変わらないことに注意。対数関数の性質を使ってどんどん変形していくと、

これを満たす自然数 は と求まる。つまり 桁とわかる。

【問 】 を小数で表したとき、初めて ではない数が現れるのは小数第何位か?

小数でも同じように考えられる。つまり、小数第 位で初めて ではない数が出てくるとすると、

となる。これも小さい数で実験して確かめよう。例えば、小数第 位で初めて ではない数が現れる数(例えば ) は 以上 未満なので、

と書ける。つまり、小数第 位で初めて ではない数が現れるとき、左辺の指数は で等号付き、右辺の指数は (プラス される)で等号は付かないことが、すぐにわかる。元に戻ると、上の例題と同様に常用対数をとって、

これを満たす自然数 は と求まる。つまり小数第 位で ではない数が現れる。小数のときは、よりややこしいので、気をつけよう。

補足

問題集や先生によっては、与えられた数をいきなり対数の中に入れて、対数の値を求めていくときもある。それでももちろんOKで、やってることは変わらないので、好きな方で解こう。

タグ

関連動画

17:53
【受験数学♯54】対数の利用(評価)AKITOの勉強チャンネル
5:10
最高位の数字(桁数問題)【高校数学Ⅱ 対数関数】数学の部屋数学の部屋【高校・大学入試数学の授業動画】
7:28
【高校数学】 数Ⅱ-131 対数とその性質①とある男が授業をしてみた
8:50
【高校数学】 数Ⅱ-135 対数関数①・グラフ編とある男が授業をしてみた
19:47
【高校 数学Ⅱ】 対数2 logの公式 (20分)映像授業 Try IT(トライイット)

関連用語

真数条件
底の変換公式
対数関数の導関数